Recent Math Problems Arising in Statistics involving Generalized Functions, Group Representations, Inequalities, and the Riemann Zeta Function

Arthur Berg
Department of Statistics, University of Florida

October 31, 2009
Paul Dirac (1902-1984)
Sergi Sobolov (1908-1989) and Laurent Schwartz (1915-2002)
Let
\[f : \mathbb{R} \to \mathbb{R} \]
be a locally integrable function and let
\[\varphi : \mathbb{R} \to \mathbb{R} \]
be infinitely differentiable with compact support.
Set
\[\langle f, \varphi \rangle = \int_{\mathbb{R}} f(x) \varphi(x) \, dx \]
\(f\) can therefore be viewed as a continuous linear functional on test functions \(\varphi\). The derivative of the distribution \(S\) is naturally defined to be
\[\langle S', \varphi \rangle \triangleq -\langle S, \varphi' \rangle \]
The **Fourier transform** can be defined on *tempered* distributions. Test functions are from the **Schwartz space** — infinitely differentiable rapidly decreasing functions — $\forall n, m$

\[
\sup_{x \in \mathbb{R}} |x^n \phi^{(m)}(x)| < \infty
\]

\[
\tilde{\phi}(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \varphi(s) e^{-isx} \, ds
\]

\[
\langle \tilde{S}, \phi \rangle = \langle S, \tilde{\phi} \rangle
\]
Let \(X_1, X_2, \ldots, X_n \overset{iid}{\sim} F(x) \). The survival function, \(S(x) = 1 - F(x) \), has estimate

\[
\hat{S}(t) = 1 - \hat{F}(t) = 1 - \frac{1}{n} \sum_{j=1}^{n} I(X_i \leq t)
\]
Bias of Smoothed EDF

\[
\hat{F}_h(t) = \int_{-\infty}^{t} \hat{f}_h(x) \, dx = \frac{1}{n} \sum_{j=1}^{n} \bar{K}\left(\frac{t-X_j}{h}\right)
\]

where \(\bar{K}(t) = \int_{-\infty}^{t} K(x) \, dx\).

\[
E[\hat{F}_h(t)] = \frac{1}{n} \sum_{j=1}^{n} E\left[\bar{K}\left(\frac{t-X_i}{h}\right)\right],
\]

\[
E\left[\bar{K}\left(\frac{t-X_i}{h}\right)\right] = \int_{-\infty}^{\infty} \bar{K}\left(\frac{t-x}{h}\right) f(x) \, dx
\]

\[
= \int_{-\infty}^{\infty} \bar{K}\left(\frac{t-x}{h}\right) dF(x)
\]

\[
= \bar{K}\left(\frac{t-x}{h}\right) F(x) \bigg|_{x=\infty}^{x=\infty} + \frac{1}{h} \int F(x) K\left(\frac{t-x}{h}\right) \, dx
\]

\[
= 0
\]

\[
= F \ast K_h(t)
\]

where \(K_h(t) = \frac{1}{h} K\left(\frac{t}{h}\right)\).
Fourier Transform of a CDF

Note that

\[F(t) = \int_{-\infty}^{t} f(x) \, dx = \int_{-\infty}^{\infty} f(x) H(t - x) \, dx = f \ast H(t) \]

where \(H(x) \) is the Heaviside step function given by \(H(x) = 1(x > 0) \). Therefore

\[\mathcal{F} (F(t)) = \phi(s) \left(\pi \delta(s) + \frac{1}{is} \right) \]

\[= \pi \phi(0) \delta(s) + \frac{\phi(s)}{is} \]

\[= \pi \delta(s) + \frac{\phi(s)}{is}. \]

where \(\phi(s) \) is the characteristic function (the Fourier transform of \(f \)).
Bias Calculation Continued

\[
\text{bias } (\hat{F}_h(t)) = K_h \ast F(t) - F(t)
\]
\[
= \mathcal{F} \left(\mathcal{F}^{-1} (K_h \ast F(t) - F(t)) \right)
\]
\[
= \mathcal{F} \left(\mathcal{F}^{-1} (K_h) \cdot \mathcal{F}^{-1} (F) - \mathcal{F}^{-1} (F) \right)
\]
\[
= \mathcal{F} \left((\mathcal{F}^{-1} (K_h) - 1) \mathcal{F}^{-1} (F) \right)
\]
\[
= \mathcal{F} \left((\kappa (sh) - 1) \left(\pi \delta(s) + \frac{\phi(s)}{is} \right) \right)
\]
\[
= \mathcal{F} \left((\kappa (sh) - 1) \frac{\phi(s)}{is} \right) - \pi \mathcal{F} \left((\kappa (sh) - 1) \delta(s) \right)
\]
\[
= \mathcal{F} \left((\kappa (sh) - 1) \frac{\phi(s)}{is} \right) - \pi \mathcal{F} \left((\kappa (sh) - 1) \bigg|_{s=0} \right)
\]
\[
= 0
\]
\[
= \frac{1}{2\pi} \int_{|s| > 1/h} (\kappa (sh) - 1) \frac{\phi(s)}{is} \, ds.
\]
Symmetries of the Bivariate ACF and Bispectrum
Symmetries of ACF

One variable: \(C(x) = C(-x) \)

Two variables:

\[
C(x, y) \overset{1}{=} C(x, y) \\
\overset{2}{=} C(-x, y - x) \\
\overset{3}{=} C(y, x) \\
\overset{4}{=} C(x - y, -y) \\
\overset{5}{=} C(-y, x - y) \\
\overset{6}{=} C(y - x, -x)
\]

Eq. 2 + Eq. 3 ⇒ Eq. 6

\[C(x, y) = C(y, x) = C(-x, y - x) \text{ suffices} \]

⋆ We wish 1) understand the symmetries and 2) symmetrize a non-symmetric function.
Constructing the Symmetries from Permutations

★Each equation corresponds to a permutation.

For simplicity, assume $E[X_t] = 0$.

The equation corresponding to the permutation $\sigma = (12)$ is

$$C(x, y) = E[X_tX_{t+x}X_{t+y}]$$

$$\overset{(12)}{=} E[X_{t+x}X_tX_{t+y}]$$

$$= E[X_tX_{t-x}X_{t-x+y}]$$

$$= C(-x, y - x)$$
A Group Representation

Define $\psi : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ given by $\psi(a, b, c) \mapsto (b - a, c - a)$. Take $\sigma = (12)$, then

$$(x, y) \xrightarrow{\sigma} (x, 0, y) \xrightarrow{\psi} (-x, y - x) \mapsto \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix}$$

$$e \longleftrightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \longleftrightarrow C(x, y) \quad (13) \longleftrightarrow \begin{pmatrix} 1 & -1 \\ 0 & -1 \end{pmatrix} \longleftrightarrow C(x - y, -y)$$

$$(12) \longleftrightarrow \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \longleftrightarrow C(-x, y - x) \quad (123) \longleftrightarrow \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix} \longleftrightarrow C(-y, x - y)$$

$$(23) \longleftrightarrow \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \longleftrightarrow C(y, x) \quad (132) \longleftrightarrow \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \longleftrightarrow C(y - x, -x)$$

Suppose $\sigma = (12)$ and $\tau = (13)$, then $\gamma = (132) = \sigma \tau$ and

$$\rho(\gamma) = \begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix} = \rho(\sigma) \rho(\tau)$$
Theorem (Berg 2007)

The mapping $\rho : S_n \rightarrow \text{GL}_{n-1}(\mathbb{R})$, described above, is a faithful group representation.

Symmetrizing lag-windows – generalizing current constructions

Current construction: $\tilde{f}(x, y) = f(x)f(y)f(x - y)$

$\tilde{f}(x, y) = h(f(x, y), f(-x, y-x), f(y, x), f(x-y, -y), f(-y, x-y), f(y-x, -x))$

where h is any symmetric function of its six arguments.

Figure: \tilde{f} with $h = \prod x_i$, $h = \max(x_i)$, $h = \min(x_i)$, and $f(x, y) = (1 - x^2 - y^2)^+$.
Implications of the Representation II

2 Generalization of the Gabr-Rao optimal window

\[\Lambda_{opt}(\omega) = \alpha \left(1 - \beta \left(\sum_{i=1}^{k-1} \omega_i^2 + \sum_{i<j} \omega_i \omega_j \right) \right) ^+ \]

Theorem (Berg 2007)

Let \(\Lambda(\omega) \) be any nonnegative kernel that integrates to one and satisfies all the necessary symmetries. Also assume

\[\int_{\mathbb{R}^{k-1}} \omega_j^2 \Lambda(\omega) \, d\omega = \int_{\mathbb{R}^{k-1}} \omega_j^2 \Lambda_{opt}(\omega) \, d\omega \]

for \(j = 1, \ldots, n - 1 \). Then \(\| \Lambda \|_{L_2} \geq \| \Lambda_{opt} \|_{L_2} \).
Agresti Example

<table>
<thead>
<tr>
<th></th>
<th>Lung Cancer</th>
<th>Heat Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsmokers</td>
<td>$p_1 = .0001$</td>
<td>$p_3 = .00413$</td>
</tr>
<tr>
<td>Smokers</td>
<td>$p_2 = .0014$</td>
<td>$p_4 = .00669$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Lung Cancer</th>
<th>Heat Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative Risk</td>
<td>14</td>
<td>1.62</td>
</tr>
<tr>
<td>Odds Ratio</td>
<td>14.02</td>
<td>1.62</td>
</tr>
<tr>
<td>Risk Difference</td>
<td>.00130</td>
<td>.00256</td>
</tr>
</tbody>
</table>

Formulas

$$RR = \frac{p_2}{p_1} \quad OR = \frac{p_2/(1 - p_2)}{p_1/(1 - p_1)} \quad RD = p_2 - p_1$$

Arthur Berg

Recent Math Problems Arising in Statistics
A General Result

Suppose $p_1, p_2, p_3, p_4 \in (0, 1)$ satisfy $p_1 + p_4 \leq 1$ or $p_2 + p_3 \leq 1$. Show that

$$\frac{p_2}{p_1} < \frac{p_4}{p_3} \quad (i)$$

and

$$p_2 - p_1 < p_4 - p_3 \quad (ii)$$

imply

$$\frac{p_2/(1 - p_2)}{p_1/(1 - p_1)} < \frac{p_4/(1 - p_4)}{p_3/(1 - p_3)} \quad (iii)$$

And also (i) and (ii) imply (iii) when $<$ is replaced with $>$ in each of the inequalities.
Let X_1, \ldots, X_n from a power law distribution

$$f(x) = f_\beta(x) = \frac{c}{x^\beta}; \quad x = 1, 2, \ldots$$

for some $\beta > 1$; note that $c = c_\beta = \frac{1}{\zeta(\beta)}$ where ζ is the Riemann zeta function.

Consider the problem of estimating β.

Define

$$H_n(x) = n\hat{f}(x) = \sum_{i=1}^{n} 1[X_i = x].$$

Natural estimate of β given from a linear regression on

$$\{(\log x, \log H_n(x)) : x = 1, 2, \ldots\},$$
Optimal Least Squares

An optimal estimate of β is a particular linear combination of \hat{c} and $\hat{\beta}$. Supposing the regression routine produced the covariance matrix

$$
\begin{pmatrix}
\hat{\tau}_{11} & \hat{\tau}_{12} \\
\hat{\tau}_{21} & \hat{\tau}_{22}
\end{pmatrix}
$$

for the covariance of

$$
\begin{pmatrix}
\hat{\beta} \\
\hat{c}
\end{pmatrix}
$$

Note that

$$
\beta = \beta(c) = \zeta^{-1}(1/c) \quad \text{and} \quad \beta'(c) = \frac{-1}{c^2 \zeta'(\zeta^{-1}(1/c))}
$$

Basing an estimate of β on $\tilde{\beta} = \zeta^{-1}(1/\hat{c})$, we have a correlated pair $\left(\hat{\beta}, \tilde{\beta}\right)$ of asymptotically unbiased estimates of β with covariance efficiently estimated by

$$
\begin{pmatrix}
\hat{\tau}_{11} & \tilde{\tau}_{12} \\
\tilde{\tau}_{21} & \tilde{\tau}_{22}
\end{pmatrix} := \begin{pmatrix} 1 & 0 \\ 0 & \beta'(\hat{c}) \end{pmatrix} \begin{pmatrix}
\hat{\tau}_{11} & \hat{\tau}_{12} \\
\hat{\tau}_{21} & \hat{\tau}_{22}
\end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & \beta'(\hat{c}) \end{pmatrix}
$$
There is an optimal convex combination $\hat{\beta}^* = a\hat{\beta} + (1 - a)\hat{\beta}$, with a given by

$$a = \frac{\tilde{\tau}_{22} - \tilde{\tau}_{12}}{\tilde{\tau}_{11} - 2\tilde{\tau}_{12} + \tilde{\tau}_{22}},$$
Main Theorem

Theorem (Abramson, Berg, Meyers 2008)

Let $\beta > 1$ be fixed and $X_1, X_2, \ldots \overset{iid}{\sim} f(x) = cx^{-\beta} (x = 1, 2, \ldots)$. Define $H_n(x) = \sum_{i=1}^n 1[X_i = x]$ and $M_{nk} = M_n = \min\{x : H_n(x) \leq k\}$ where k is any nonnegative integer. Provided a sequence y_n satisfies

$$y_ne^{-ncy_n^{-\beta}} \rightarrow 0 \quad (\star)$$

as $n \to \infty$, it follows that $\Pr [M_n > y_n] \rightarrow 1$ as $n \to \infty$.

In estimating rates for y_n, we would like to approximate the difference between

$$\zeta(s) \quad \text{and} \quad \int_1^\infty x^{-s} \, dx$$

And show

$$\zeta(2) - 1 = \frac{\pi^2}{6} - 1 = \sup_{s \in (1,2]} \left[\zeta(s) - \int_1^\infty x^{-s} \, dx \right] \quad (\star\star)$$